• Montag, 25 November 2024
  • 09:25 Uhr Frankfurt
  • 08:25 Uhr London
  • 03:25 Uhr New York
  • 03:25 Uhr Toronto
  • 00:25 Uhr Vancouver
  • 19:25 Uhr Sydney

Woodlawn Phase II Drilling Continues to Deliver: 7.1m @ 40.6% ZnEq in Kate Lens extension

06.07.2015  |  FSCwire

Sydney, Australia (FSCwire) - Further to the report released on the 25 June 2015, Heron Resources Ltd. (“Heron” or the “Company”) is pleased to report a number of excellent results from the second phase of diamond drilling at its wholly owned Woodlawn Project, located 50km northeast of Canberra and 250km southwest of Sydney, in New South Wales, Australia.  This drilling forms a key input into the fully funded Feasibility Study, which is expected to be completed in the first half of calendar year 2016.

Phase II Drilling Progress Report

The Phase II drilling program at Woodlawn commenced in May and to date 14 holes having been completed for 5,350m.  The initial part of the Phase II program has been designed to test the shallow mineralised positions that have the potential to provide easily accessible production in the early part of the future underground operation, as well as to perform the in-fill drilling required to upgrade the underground Mineral Resource.

As reported on 25 June 2015, a number of zones of polymetallic sulphides have been intersected in extensional areas of the Kate Lens and other lens positions.  Assay results have now been received for some of these intercepts with a number of very high grade results returned. Details of drill hole coordinates, direction and intercepts are provided at the end of this report.

Kate Lens Extension:

  • 7.1m @ 16.1% Zn, 0.9% Cu, 11.3% Pb, 3.5g/t Au, 254g/t Ag (40.6% ZnEq) from 340m, WNDD0029
  • 4.8m @ 7.6% Zn, 0.4% Cu, 0.9% Pb, 0.7g/t Au, 37.4g/t Ag (11.0% ZnEq) from 324m, WNDD0029

These results (Figures 1 to 3) demonstrate considerable up-side potential for the Kate Lens in the up-dip position. 

In addition, the 25m massive sulphide intercept in WNDD0033, which is the thickest polymetallic intercept recorded into Kate Lens to date, and sits outside the current Mineral Resource, is very encouraging and can be subdivided into three main zones:

  • 5.8m of mostly polymetallic sulphides from 326.0m depth.
  • 12.6m of mixed polymetallic and copper sulphides from 332.2m (bulked with intercept above on cross section).
  • 8.9m of mostly polymetallic sulphides and minor copper sulphides from 351.1m.

These intercepts demonstrate the excellent potential for additional mineralisation in the Kate Lens up-dip positions.  One of the major faults traverses obliquely to the plane of the section (Figure 5) and is likely to be related to the lens thickening in WNDD0033.  This may either be through structural repetition or the faults may have been one of the early syn-depositional fluid conduits around which a greater mass of massive sulphides formed.

H Lens Up-dip Extension:

  • 1.7m @ 3.5% Zn, 6.8% Cu, 4.9% Pb, 3.9g/t Au, 213g/t Ag (39.8% ZnEq) from 108.7m, WNDD0026
  • 0.75m @ 5.6% Zn, 8.1% Cu, 6.8% Pb, 3.6g/t Au, 398g/t Ag (51.5% ZnEq) from 103.8m, WNDD0027

These results, while relatively narrow, demonstrate good up-dip continuity and have the potential to provide high-value production in the early stage of the mine development. The intercepts are shown in long-section in Figure 4.

E Lens Extension:

  • 2.5m @ 1.9% Zn, 1.2% Cu, 0.3% Pb, 3.4g/t Au, 16.5g/t Ag (11.7% ZnEq) from 151.3m, WNDD0025

This intercept (Figure 5) provides an approximate 15m extension of the E Lens to the south.  Further expansion of the E Lens will be tested in this area and again potentially provides an early source of production for the operation from relatively shallow areas.

DHEM Surveys

Down hole electro-magnetic (DHEM) surveys are currently being conducted on the holes drilled to date with a number of significant, although preliminary, anomalies identified.  Further information will be provided once the surveys and modelling is more advanced.

The Company is delighted with these results from the Phase II drilling and in particular with the step out results achieved with the Kate Lens.  Further results will be provided as they become available.

About Heron Resources Limited:

Heron is engaged in the exploration and development of base and precious metal deposits in Australia.  Heron’s primary development project is the high grade Woodlawn Zinc-Copper Project located 250km southwest of Sydney, New South Wales.

For further information, please visit www.heronresources.com.au or contact:

Australia:

Mr Wayne Taylor,                                                                                                                Mr Jon Snowball

Managing Director and Chief Executive Officer:                                                           FTI Consulting

Tel: +61 8 6500 9200                                                                                                         Tel: +61 477 946 068

Canada:                                              

Email: heron@heronresources.com.au                                                                         

Tel: +1 905 727 8688 (Toronto)

Figure 1:  Plan view of Woodlawn lenses showing location of underground access and long-section views shown below. 

To view the graphic in its original size, please click here

Figure 2:  Kate Lens Long-Section Detailed showing a selection of recent and significant intercepts.

To view the graphic in its original size, please click here

Figure 3:  Cross section through the Kate Lens showing recent intercepts (results pending for two holes).

To view the graphic in its original size, please click here

Figure 4:  Kate, E, D, F Lens long section showing a selection of recent and significant intercepts. 

To view the graphic in its original size, please click here

Figure 5:  G, Lisa, I Lens Long-Section showing a selection of recent and significant intercepts.

To view the graphic in its original size, please click here

Technical Information

Table 1: Drill hole details for diamond drill holes relevant to this update

Hole No.

WMG

East (m)

WMG

North (m)

WMG

RL (m)

Surface
Dip

WMG Surface

Azimuth

Depth (m)

Target

WNDD0020W1

 9,407

 18,951

 2,823

-53

77

 444.7

South EM target

WNDD0021

 9,013

 19,599

 2,787

-85

130

 319.1

Lisa Lens down dip

WNDD0022

 9,013

 19,599

 2,787

-78

100

 276.0

Lisa Lens north

WNDD0023

 9,237

 19,227

 2,798

-65

60

 240.0

E Lens extension

WNDD0024

 9,285

 19,327

 2,799

-60

90

 82.5

G Lens extensions

WNDD0025

 9,299

 19,261

 2,801

-60

89

 218.4

E Lens extensions

WNDD0026

 9,145

 19,407

 2,792

-56

85

 150.0

H Lens up-dip

WNDD0027

 9,204

 19,364

 2,795

-81

85

 44.9

H Lens up-dip

WNDD0028

 9,225

 19,197

 2,796

-58

 83

265.5

G Lens extension

WNDD0029

 9,052

 19,298

 2,791

-55

 62

373.7

Kate Lens up-dip

WNDD0030

 8,882

 19,379

 2,793

-80

 62

699.6

Kate Lens down plunge

WNDD0031

 8,990

 19,399

 2,792

-70

 71

442.6

Kate Lens extension north

WNDD0032

 9,023

 19,338

 2,790

-70

 78

447.5

Kate Lens down dip

WNDD0033

 9,053

 19,297

2790

-58

53

260.5

Kate Lens up dip

WNDD0034

 8,990

 19,399

2792

-74

62

167.1

Kate Lens north

Notes: WMG = Woodlawn Mine Grid

Table 2: Details of massive sulphide intercepts and reported grades from current Heron campaign

Hole No

From (m)

To (m)

Downhole Width (m)

Estimated

True Width (m)

Zn (%)

Cu (%)

Pb (%

Au (g/t)

Ag (g/t)

WNDD0023

166.8

170.0

3.2

2.6

0.1

1.7

0.0

0.1

5.9

WNDD0024

30.0

33.0

3.0

2.4

8.5

3.5

5.2

6.3

160.6

WNDD0025

151.3

153.8

2.5

 2

1.9

1.2

0.2

3.4

16.5

WNDD0026

108.7

110.4

1.7

 1

3.5

6.8

4.9

3.9

213

WNDD0027

103.8

104.6

0.75

0.6

5.6

8.1

6.8

3.6

398

WNDD0029

324.3

329.1

4.8

 4

7.6

0.4

0.9

0.7

37.4

WNDD0029

340

347.15

7.1

 6

16.9

0.9

11.3

3.5

254.1

 

Notes: True width is an estimate of the actual thickness of the intercept based on interpreted lens orientation (approximately 80% of downhole width); grades are weighted average grades, weighted by length of samples intervals downhole, which are nominally 1 metre. No weighting was applied for differences in specific gravity which is most cases are relatively low. 

Compliance Statement (JORC 2012 and NI43-101)

The technical information in this news release relating to the exploration results at the Woodlawn Project is based on information compiled by Mr David von Perger, who is a Member of the Australian Institute of Mining and Metallurgy (Chartered Professional – Geology). Mr von Perger is a full time employee of Heron Resources Ltd. and has sufficient experience, which is relevant to the style of mineralization and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the “Australasian Code for Reporting of Exploration Results and “qualified person” as this term is defined in Canadian National Instrument 43-101 (“NI 43-101”). Mr von Perger has reviewed this press release and consents to the inclusion in this news release of the information in the form and context in which it appears.

CAUTIONARY NOTE REGARDING FORWARD-LOOKING INFORMATION
This news release contains forward-looking statements and forward-looking information within the meaning of applicable Canadian securities laws, which are based on expectations, estimates and projections as of the date of this news release. This forward-looking information includes, or may be based upon, without limitation, estimates, forecasts and statements as to management’s expectations with respect to, among other things, the timing and amount of funding required to execute the Company’s exploration, development and business plans, capital and exploration expenditures, the effect on the Company of any changes to existing legislation or policy, government regulation of mining operations, the length of time required to obtain permits, certifications and approvals, the success of exploration, development and mining activities, the geology of the Company’s properties, environmental risks, the availability of labour, the focus of the Company in the future, demand and market outlook for precious metals and the prices thereof, progress in development of mineral properties, the Company’s ability to raise funding privately or on a public market in the future, the Company’s future growth, results of operations, performance, and business prospects and opportunities. Wherever possible, words such as “anticipate”, “believe”, “expect”, “intend”, “may” and similar expressions have been used to identify such forward-looking information. Forward-looking information is based on the opinions and estimates of management at the date the information is given, and on information available to management at such time. Forward-looking information involves significant risks, uncertainties, assumptions and other factors that could cause actual results, performance or achievements to differ materially from the results discussed or implied in the forward-looking information. These factors, including, but not limited to, fluctuations in currency markets, fluctuations in commodity prices, the ability of the Company to access sufficient capital on favourable terms or at all, changes in national and local government legislation, taxation, controls, regulations, political or economic developments in Canada, Australia or other countries in which the Company does business or may carry on business in the future, operational or technical difficulties in connection with exploration or development activities, employee relations, the speculative nature of mineral exploration and development, obtaining necessary licenses and permits, diminishing quantities and grades of mineral reserves, contests over title to properties, especially title to undeveloped properties, the inherent risks involved in the exploration and development of mineral properties, the uncertainties involved in interpreting drill results and other geological data, environmental hazards, industrial accidents, unusual or unexpected formations, pressures, cave-ins and flooding, limitations of insurance coverage and the possibility of project cost overruns or unanticipated costs and expenses, and should be considered carefully. Many of these uncertainties and contingencies can affect the Company’s actual results and could cause actual results to differ materially from those expressed or implied in any forward-looking statements made by, or on behalf of, the Company. Prospective investors should not place undue reliance on any forward-looking information. Although the forward-looking information contained in this news release is based upon what management believes, or believed at the time, to be reasonable assumptions, the Company cannot assure prospective purchasers that actual results will be consistent with such forward-looking information, as there may be other factors that cause results not to be as anticipated, estimated or intended, and neither the Company nor any other person assumes responsibility for the accuracy and completeness of any such forward-looking information. The Company does not undertake, and assumes no obligation, to update or revise any such forward-looking statements or forward-looking information contained herein to reflect new events or circumstances, except as may be required by law.


No stock exchange, regulation services provider, securities commission or other regulatory authority has approved or disapproved the information contained in this news release.

Appendix 1 – JORC 2012 Table 1

Section 1 Sampling Techniques and Data 

(Criteria in this section applies to all succeeding sections)

Criteria

JORC Code explanation

Commentary

Sampling techniques

  • Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.
  • Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
  • Aspects of the determination of mineralisation that are Material to the Public Report.
  • Samples from the diamond-core holes are being taken from mostly HQ3 and NQ3 sized core and sampled on a nominal 1 metre basis taking into account smaller sample intervals up to geological contacts.  The core is cut in half along the core orientation line (where available) and in massive sulphide zones one portion is quartered for assaying, half the core is preserved for metallurgical testing and the remaining quarter is retained as reference material in the core trays.  In non-massive sulphide material half core is sampled.
  • These sampling methods are standard industry methods and are believed to provide acceptably representative samples for the type of mineralisation encountered.

Drilling techniques

  • Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details.
  • Diamond-core drilling is being undertaken by Sandvik UDR650 rigs with HQ3 and NQ3 sized core being drilled.  Various techniques are employed to ensure the hole is kept within limits of the planned position.  The core is laid out in standard plastic cores trays.

Drill sample recovery

  • Method of recording and assessing core and chip sample recoveries and results assessed.
  • The core is transported to an enclosed core logging area and recoveries are recorded.  Recoveries to date have been better than 95%.  The core is orientated where possible and marked with 1 metre downhole intervals for logging and sampling.

Logging

  • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
  • The diamond core is geologically logged by qualified geologists. Geotechnical logging is also being undertaken on selected sections of the core.  Samples for metallurgical testing are being kept in a freezer to reduce oxidation prior to being transported to the metallurgical laboratory.

Sub-sampling techniques and sample preparation

  • For all sample types, the nature, quality and appropriateness of the sample preparation technique.
  • All core samples are crushed then pulverised in a ring pulveriser (LM5) to a nominal 90% passing 75 micron. An approximately 250g pulp sub-sample is taken from the large sample and residual material stored.
  • A quartz flush (approximately 0.5 kilogram of white, medium-grained sand) is put through the LM5 pulveriser prior to each new batch of samples.  A number of quartz flushes are also put through the pulveriser after each massive sulphide sample to ensure the bowl is clean prior to the next sample being processed.  A selection of this pulverised quartz flush material is then analysed and reported by the lab to gauge the potential level of contamination that may be carried through from one sample to the next.

Quality of assay data and laboratory tests

  • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
  • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.
  • Sample preparation and assaying is being conducted through ALS Laboratories, Orange, NSW with certain final analysis of pulps being undertaken at the ALS Laboratory in Brisbane QLD.
  • Gold is determined by 30g fire assay fusion with ICP-AES analysis to 1ppb LLD.
  • Other elements by mixed acid digestion followed by ICP-AES analysis. 
  • Laboratory quality control standards (blanks, standards and duplicates) are inserted at a rate of 5 per 35 samples for ICP work.

Verification of sampling and assaying

  • The verification of significant intersections by either independent or alternative company personnel.
  • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
  • Discuss any adjustment to assay data.
  • An internal review of results was undertaken by company personnel.  No independent verification was undertaken at this stage.
  • All field and laboratory data has been entered into an industry standard database using a contract database administrator (DBA) in the Company’s Perth office.  Validation of both the field and laboratory data is undertaken prior to final acceptance and reporting of the data.
  • Quality control samples from both the Company and the Laboratory are assessed by the DBA and reported to the Company geologists for verification.  All assay data must pass this data verification and quality control process before being reported.

Location of data points

  • Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
  • The drill collars were initially located with a combination of handheld GPS and licenced surveyor using a DGPS system, with accuracy of about 1m.  The final drill collars are “picked up” by a licenced surveyor with accuracy to 1 centimetre.
  • While drilling is being undertaken, downhole surveys are conducted using a downhole survey tool that records the magnetic azimuth and dip of the hole.  These recordings are taken approximately every 30 metres downhole.  Where possible holes are also being surveyed with gyroscopic methods, with some 80 percent of holes drilled in the current program also surveyed by this method after drilling has been completed.

Data spacing and distribution

  • Data spacing for reporting of Exploration Results.
  • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
  • Whether sample compositing has been applied.
  • The diamond drilling is mostly following-up in various directions from previous intercepts with a nominal spacing in the range  30-40m.  This drill hole spacing will be sufficient to provide Mineral Resource estimates in the future.

Orientation of data in relation to geological structure

  • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
  • The drilling orientation is designed to intersect the mineralised lenses at a close to perpendicular angle.  The mineralised lenses are dipping at approximately 50-70 degrees to the west and the drilling is approximately at 60 degrees to the east.  This will vary from hole to hole.

Sample security

  • The measures taken to ensure sample security.
  • Samples are being secured in green plastic bags and are being transported to the ALS   laboratory in Orange, NSW via a courier service or with Company personnel/contractors. 

Audits or reviews

  • The results of any audits or reviews of sampling techniques and data.
  • A review and assessment of the laboratory procedures was under taken by company personnel in late 2014 resulting in some changes to their sample pulverising procedure.
 
 
Section 2                      Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria

JORC Code explanation

Commentary

Mineral tenement and land tenure status

  • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.
  • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.
  • The Woodlawn project is located 250km south-west of Sydney in the state of New South Wales.  The area is near the top of the Great Australian Dividing range and has an elevation around 800m above sea-level.  The mineral and mining rights to the project are owned 100% by the Company through the granted, special mining lease 20 (SML20).  The lease has been renewed to the 16 November 2029.
  • The project area is on private land owned by Veolia who operate a waste disposal facility that utilises the historical open-pit void.  An agreement is in place with Veolia for the Company to purchase certain sections of this private land to facilitate future mining and processing activities.  A cooperation agreement is also in place between Veolia and the Company that covers drilling and other exploration activities in the area.

Exploration done by other parties

  • Acknowledgment and appraisal of exploration by other parties.
  • The Woodlawn deposit was discovered by the Jododex JV in 1970 and open-pit mining began in 1978 and continued through to 1987. The project was bought outright by Rio Tinto Ltd. (CRA) in 1984 who completed the open-pit mining. Underground operations commenced in 1986 and the project was sold to Denehurst Ltd in 1987 who continued underground mining up until 1998.  The mineral rights to the project were then acquired by TriAusMin Ltd in 1999 who conducted studies on a tailings re-treatment process and further underground operations.  Heron took 100% ownership of the project in August 2014 following the merger of the two companies.  Some 980 surface and underground drill holes have been completed on the project to date and various studies undertaken.

Geology

  • Deposit type, geological setting and style of mineralization.
  • The Woodlawn deposit comprises volcanogenic massive sulphide mineralisation consisting of stratabound lenses of pyrite, sphalerite, galena and chalcopyrite.  The mineralisation is hosted in the Silurian aged Woodlawn Felsic Volcanic package of the Goulburn sub-basin on the eastern side of the Lachlan Fold Belt.

Drill hole Information

  • A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
  • A table detailing the drill hole information is given in the body of the report.

Data aggregation methods

  • In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
  • Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
  • The reported assays are weighted for their assay interval width. The majority of the assay interval widths are 1 metre, but this weighting does take into account the non 1 metre intervals and weights the average assay results accordingly.
  • For the results reported here no weighting was included for specific gravity (SG) measurements that have been taken for all sample intervals as the samples within the intervals are of a similar SG.

Relationship between mineralization widths and intercept lengths

  • These relationships are particularly important in the reporting of Exploration Results.
  • If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
  • The massive sulphide zone intercepted in the drilling to date is at an angle to the drill axis and therefore the true width is estimated to be some 0.8 of down-hole width.  That is, a down-hole intercept of 16m equates to a true width of 12m.  This is only an approximation at this stage and will be better estimated as the orientation of the lenses is better defined.

Diagrams

  • Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.
  • A long-section showing the hole positions relevant for current phase of exploration is included in the release.  Other maps and diagrams showing the location of the Woodlawn Project are included in other recent Company releases.

Balanced reporting

  • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.
  • The reporting is considered to be balanced and all relevant results have been disclosed for this current phase of exploration.

Other substantive exploration data

  • Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.
  • The drill holes are being cased with either 40 or 50 millimetre PVC tubing for down-hole DHEM surveying which is undertaken on the majority of the holes drilled.
  • Geotechnical logging is undertaken on all core, 25m either side of the massive sulphide lenses.
  • Archimedes method SG measurements are determined for all sampled intervals.

Further work

  • The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).
  • This report is the second report for the second phase of diamond drilling at Woodlawn.  The program is designed to provide the critical drill data for the Mineral Resource definition that will feed into the Feasibility Study now underway.
  • It is expected that this program will be ongoing over the next 6 to 8 months.


To view this press release as a PDF file, click onto the following link:
public://news_release_pdf/HeronPRJuly52015.pdf

Source: Heron Resources Ltd. (TSX:HER, ASX:HRR) http://www.triausmin.com/

Maximum News Dissemination by FSCwire. http://www.fscwire.com

Copyright © 2015 Filing Services Canada Inc.






Bewerten 
A A A
PDF Versenden Drucken

Für den Inhalt des Beitrages ist allein der Autor verantwortlich bzw. die aufgeführte Quelle. Bild- oder Filmrechte liegen beim Autor/Quelle bzw. bei der vom ihm benannten Quelle. Bei Übersetzungen können Fehler nicht ausgeschlossen werden. Der vertretene Standpunkt eines Autors spiegelt generell nicht die Meinung des Webseiten-Betreibers wieder. Mittels der Veröffentlichung will dieser lediglich ein pluralistisches Meinungsbild darstellen. Direkte oder indirekte Aussagen in einem Beitrag stellen keinerlei Aufforderung zum Kauf-/Verkauf von Wertpapieren dar. Wir wehren uns gegen jede Form von Hass, Diskriminierung und Verletzung der Menschenwürde. Beachten Sie bitte auch unsere AGB/Disclaimer!



Mineninfo
Heron Resources Ltd.
Bergbau
-
-
Copyright © Minenportal.de 2006-2024 | MinenPortal.de ist eine Marke von GoldSeiten.de und Mitglied der GoldSeiten Mediengruppe
Alle Angaben ohne Gewähr! Es wird keinerlei Haftung für die Richtigkeit der Angaben und der Kurse übernommen!
Informationen zur Zeitverzögerung der Kursdaten und Börsenbedingungen. Kursdaten: Data Supplied by BSB-Software.